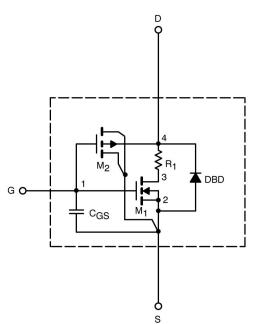


SPICE Device Model Si4894DY Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

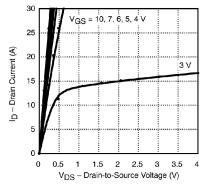
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

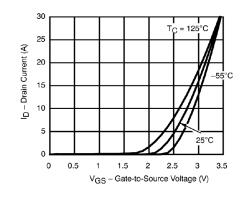
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

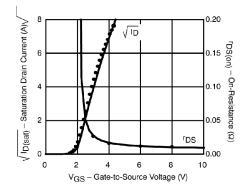
lodel Si4894DY

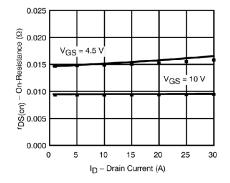
Vishay Siliconix

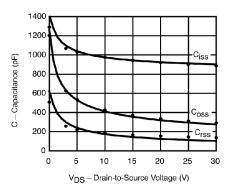
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},\ I_{D}=250\ \mu A$	1.25	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	398	А
Drain-Source On-State Resistance ^a	f _{DS(on)}	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.5 \text{ A}$	0.010	Ω
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10.2 \text{ A}$	0.015	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 12.5 \text{ A}$	31	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S} = 2.7$ A, $V_{\rm GS} = 0$ V	0.70	V
Dynamic ^b				
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 12.5 A	19.2	nC
Gate-Source Charge	Q _{gs}		3	
Gate-Drain Charge	Q _{gd}		4.5	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 15 \text{ V}, \text{ R}_{L} = 15 \Omega$ $I_{D} \cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_{G} = 6 \Omega$ $I_{F} = 2.7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	10	ns
Rise Time	tr		15	
Turn-Off Delay Time	t _{d(off)}		22	
Fall Time	t _f		40	
Source-Drain Reverse Recovery Time	t _{rr}		30	

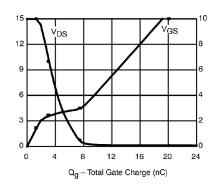

Notes


a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4894DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.